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Molecular genetic studies of model plants in the past few decades have identified 
many key genes and pathways controlling development, metabolism and 
environmental responses. Recent technological and informatics advances have led 
to unprecedented volumes of data that may uncover underlying principles of plants 
as biological systems. The newly emerged discipline of synthetic biology and related 
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molecular engineering approaches is built on this strong foundation. Today, plant 
regulatory pathways can be reconstituted in heterologous organisms to identify and 
manipulate parameters influencing signalling outputs. Moreover, regulatory circuits 
that include receptors, ligands, signal transduction components, epigenetic 
machinery and molecular motors can be engineered and introduced into plants to 
create novel traits in a predictive manner. Here, we provide a brief history of plant 
synthetic biology and significant recent examples of this approach, focusing on how 
knowledge generated by the reference plant Arabidopsis thaliana has contributed to 
the rapid rise of this new discipline, and discuss potential future directions. 
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Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate 
Glycolysis and the TCA Cycle in Tumorigenesis. 
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It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the  
cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We 
demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and  
B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 
(PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and 



subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a 
protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at 
T338,  
which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase 
(PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses 
reactive oxygen species production, increases lactate production, and promotes 
brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation 
levels 
correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in 
glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in 
coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is 
instrumental in cancer metabolism and tumorigenesis. 
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Gene expression can be regulated post-transcriptionally through dynamic and 
reversible RNA modifications. A recent noteworthy example is N6-methyladenosine 
(m6A), which affects messenger RNA (mRNA) localization, stability, translation and 
splicing. Here we report on a new mRNA modification, N1-methyladenosine (m1A), 
that occurs on thousands of different gene transcripts in eukaryotic cells, from yeast 
to mammals, at an estimated average transcript stoichiometry of 20% in humans. 
Employing newly developed sequencing approaches, we show that m1A is enriched 
around the start codon upstream of the first splice site: it preferentially decorates 
more structured regions around canonical and alternative translation initiation 
sites, is dynamic in response to physiological conditions, and correlates positively 
with protein production. These unique features are highly conserved in mouse and 
human cells, strongly indicating a functional role for m1A in promoting translation 
of methylated mRNA. 
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The origin of eukaryotes stands as a major conundrum in biology1. Current evidence 
indicates that the last eukaryotic common ancestor already possessed many 
eukaryotic hallmarks, including a complex subcellular organization1, 2, 3. In addition, 
the lack of evolutionary intermediates challenges the elucidation of the relative 
order of emergence of eukaryotic traits. Mitochondria are ubiquitous organelles 
derived from an alphaproteobacterial endosymbiont4. Different hypotheses disagree 
on whether mitochondria were acquired early or late during eukaryogenesis5. 
Similarly, the nature and complexity of the receiving host are debated, with models 
ranging from a simple prokaryotic host to an already complex proto-eukaryote1, 3, 6, 

7. Most competing scenarios can be roughly grouped into either mito-early, which 
consider the driving force of eukaryogenesis to be mitochondrial endosymbiosis 
into a simple host, or mito-late, which postulate that a significant complexity 
predated mitochondrial endosymbiosis3. Here we provide evidence for late 



mitochondrial endosymbiosis. We use phylogenomics to directly test whether 
proto-mitochondrial proteins were acquired earlier or later than other proteins of 
the last eukaryotic common ancestor. We find that last eukaryotic common ancestor 
protein families of alphaproteobacterial ancestry and of mitochondrial localization 
show the shortest phylogenetic distances to their closest prokaryotic relatives, 
compared with proteins of different prokaryotic origin or cellular localization. 
Altogether, our results shed new light on a long-standing question and provide 
compelling support for the late acquisition of mitochondria into a host that already 
had a proteome of chimaeric phylogenetic origin. We argue that mitochondrial 
endosymbiosis was one of the ultimate steps in eukaryogenesis and that it provided 
the definitive selective advantage to mitochondria-bearing eukaryotes over less 
complex forms. 
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Eukaryotic cells restrict protein synthesis under various stress conditions, by 
inhibiting the eukaryotic translation initiation factor 2B (eIF2B)1, 2. eIF2B is the 
guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of 
α-, β- and γ-subunits. eIF2B exchanges GDP for GTP on the γ-subunit of eIF2 (eIF2γ), 
and is inhibited by stress-induced phosphorylation of eIF2α. eIF2B is a 
heterodecameric complex of two copies each of the α-, β-, γ-, δ- and ε-subunits3; its 
α-, β- and δ-subunits constitute the regulatory subcomplex4, while the γ- and ε-
subunits form the catalytic subcomplex5. The three-dimensional structure of the 
entire eIF2B complex has not been determined. Here we present the crystal 
structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit 
arrangement, in which the α2β2δ2 hexameric regulatory subcomplex binds two γε 
dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro 
analysis by a surface-scanning site-directed photo-cross-linking method identified 
the eIF2α-binding and eIF2γ-binding interfaces, located far apart on the regulatory 
and catalytic subcomplexes, respectively. The eIF2γ-binding interface is located 
close to the conserved ‘NF motif’, which is important for nucleotide exchange. A 
structural model was constructed for the complex of eIF2B with phosphorylated 



eIF2α, which binds to eIF2B more strongly than the unphosphorylated form. These 
results indicate that the eIF2α phosphorylation generates the ‘nonproductive’ eIF2–
eIF2B complex5, which prevents nucleotide exchange on eIF2γ, and thus provide a 
structural framework for the eIF2B-mediated mechanism of stress-induced 
translational control. 


