The iron-sulfur cluster (ISC) is an ancient and essential cofactor of many
proteins involved in electron transfer and metabolic reactions. In Arabidopsis, three pathways exist for the maturation of iron-sulfur proteins in the cytosol, plastids, and mitochondria. We functionally characterized the role of mitochondrial glutaredoxin S15 (GRXS15) in biogenesis of ISC containing aconitase through a combination of genetic, physiological, and biochemical approaches. Two Arabidopsis T-DNA insertion mutants were identified as null mutants with early embryonic lethal phenotypes that could be rescued by GRXS15. Furthermore, we showed that recombinant GRXS15 is able to coordinate and transfer an ISC and that this coordination depends on reduced glutathione (GSH). We found the Arabidopsis GRXS15 able to complement growth defects based on disturbed ISC protein assembly of a yeast Δgrx5 mutant. Modeling of GRXS15 onto the crystal structures of related nonplant proteins highlighted amino acid residues that after mutation diminished GSH and subsequently ISC coordination, as well as the ability to rescue the yeast mutant. When used for plant complementation, one of these mutant variants, GRXS15K83/A, led to severe developmental delay and a pronounced decrease in aconitase activity by approximately 65%. These results indicate that mitochondrial GRXS15 is an essential protein in Arabidopsis, required for full activity of iron-sulfur proteins.

Keith

Species-Specific Structural and Functional Divergence of α-Crystallins: Zebrafish αBa- and Rodent αAins-Crystallin Encode Activated Chaperones

Biochemistry, 2015, 54 (38), pp 5949–5958

Hanane A. Koteiche, Derek P. Claxton, Sanjay Mishra, Richard A. Stein, Ezelle T. McDonald, and Hassane S. Mchaourab*

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
In addition to contributing to lens optical properties, the α-crystallins are small heat shock proteins that possess chaperone activity and are predicted to bind and sequester destabilized proteins to delay cataract formation. The current model of α-crystallin chaperone mechanism envisions a transition from the native oligomer to an activated form that has higher affinity to non-native states of the substrate. Previous studies have suggested that this oligomeric plasticity is encoded in the primary sequence and controls access to high affinity binding sites within the N-terminal domain. Here, we further examined the role of sequence variation in the context of species-specific α-crystallins from rat and zebrafish. Alternative splicing of the αA gene in rodents produces αAins, which is distinguished by a longer N-terminal domain. The zebrafish genome includes duplicate αB-crystallin genes, αBa and αBb, which display divergent primary sequence and tissue expression patterns. Equilibrium binding experiments were employed to quantitatively define chaperone interactions with a destabilized model substrate, T4 lysozyme. In combination with multiangle light scattering, we show that rat αAins and zebrafish α-crystallins display distinct global structural properties and chaperone activities. Notably, we find that αAins and αBa demonstrate substantially enhanced chaperone function relative to other α-crystallins, binding the same substrate more than 2 orders of magnitude higher affinity and mimicking the activity of fully activated mammalian small heat shock proteins. These results emphasize the role of sequence divergence as an evolutionary strategy to tune chaperone function to the requirements of the tissues and organisms in which they are expressed.

Fionn

A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress.

Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress.

Sokolova V, Li F, Polovin G, Park S.
Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly.

Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress.

Syk is Recruited to Stress Granules and Promotes their Clearance through Autophagy.
Damian


Elizabeth:

November 4, 2015
Sharma KK.
Crystallin biochemistry in health and disease.
Biochim Biophys Acta. 2015 Oct 26;. PMID: 26515633 [PubMed - as supplied by publisher]

Singhal K, Vreede J, Mashaghi A, Tans SJ, Bolhuis PG.
The Trigger Factor Chaperone Encapsulates and Stabilizes Partial Folds of Substrate Proteins.

Tao P, Guo WL, Li BY, Wang WH, Yue ZC, Lei JL, Zhong XM.
Genome-wide identification, classification, and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis).

Nostramo R, Varia SN, Zhang B, Emerson MM, Herman PK.
The catalytic activity of the Ubp3 deubiquitinating protease is required for efficient stress granule assembly in S. cerevisiae.

Nillegoda NB, Bukau B.
Metazoan Hsp70-based protein disaggregases: emergence and mechanisms.

A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis.

Yang J, Carroll KS, Liebler DC.
The expanding landscape of the thiol redox proteome.

Zhou MH, Bavencoffe A, Pan HL.
Molecular Basis of Regulating High Voltage-Activated Calcium Channels by S-Nitrosylation.

A conserved co-chaperone is required for virulence in fungal plant pathogens.


Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress.

Gutierrez-Beltran E.
Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis.

Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress.

Genest O, Hoskins JR, Kravats AN, Doyle SM, Wickner S.
Hsp70 and Hsp90 of E. coli directly interact for collaboration in protein remodeling.

Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O.
S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth.
Ryu JY, Kim JY, Park CM.
Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis.
Plant Signal Behav. 2015 Oct 9;0. PMID: 26452406 [PubMed - as supplied by publisher]

Sokolova V, Li F, Polovin G, Park S.
Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly.

Endow JK, Singhal R, Fernandez DE, Inoue K.
Chaperone-Assisted Post-Translational Transport of Plastidic Type I Signal Peptidase 1.

Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS.
Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.).

Zhang J, Li Y, Jia HX, Li JB, Huang J, Lu MZ, Hu JJ.
The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses.

Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress.


