Serio, T.R. (2018). [PIN+]ing down the mechanism of prion appearance. FEMS Yeast Res. 18, 1–10.

Pei, F., DiSalvo, S., Sindi, S.S., and Serio, T.R. (2017). A dominant-negative mutant inhibits multiple prion variants through a common mechanism. PLoS Genet. 13, e1007085.

Langlois, C.R., Pei, F., Sindi, S.S., and Serio, T.R. (2016). Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo. PLoS Genet. 12(11), e1006417.

Pezza, J. a, Villali, J., Sindi, S.S., and Serio, T.R. (2014). Amyloid-associated activity contributes to the severity and toxicity of a prion phenotype. Nat. Commun. 5, 4384.

Klaips, C.L., Hochstrasser, M.L., Langlois, C.R., and Serio, T.R. (2014). Spatial quality control bypasses cell-based limitations on proteostasis to promote prion curing. Elife 3, e04288.

Holmes, W.M., Mannakee, B.K., Gutenkunst, R.N., and Serio, T.R. (2014). Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat. Commun. 5, 4383.

Holmes, W.M., Klaips, C.L., and Serio, T.R. (2014). Defining the limits: Protein aggregation and toxicity in vivo. Crit. Rev. Biochem. Mol. Biol. 49, 294–303.

DiSalvo, S., Derdowski, A., Pezza, J.A., and Serio, T.R. (2011). Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat. Struct. Mol. Biol. 18, 486–492.

DiSalvo, S., and Serio, T.R. (2011). Insights into prion biology: Integrating a protein misfolding pathway with its cellular environment. Prion 5, 76–83.

Tuite, M.F., and Serio, T.R. (2010). The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 11, 823–833.

Derdowski, A., Sindi, S.S., Klaips, C.L., DiSalvo, S., and Serio, T.R. (2010). A size threshold limits prion transmission and establishes phenotypic diversity. Science 330, 680–683.

Sindi, S.S., and Serio, T.R. (2009). Prion dynamics and the quest for the genetic determinant in protein-only inheritance. Curr. Opin. Microbiol. 12, 623–630.

Pezza, J.A., Langseth, S.X., Raupp Yamamoto, R., Doris, S.M., Ulin, S.P., Salomon, A.R., and Serio, T.R. (2009). The NatA acetyltransferase couples Sup35 prion complexes to the [PSI+] phenotype. Mol. Biol. Cell 20, 1068–1080.

Pezza, J.A., and Serio, T.R. (2007). Prion Propagation, The Role of Protein Dynamics. Prion 1, 36–43.

Satpute-Krishnan, P., Langseth, S.X., and Serio, T.R. (2007). Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol. 5, e24.

Satpute-Krishnan, P., and Serio, T.R. (2005). Prion protein remodelling confers an immediate phenotypic switch. Nature 437, 262–265.

Serio, T.R., Cashikar, A.G., Kowal, A.S., Sawicki, G.J., and Lindquist, S.L. (2001). Self-perpetuating changes in Sup35 protein conformation as a mechanism of heredity in yeast. Biochem. Soc. Symp. 35–43.

Serio, T.R., Cashikar, A.G., Kowal, A.S., Sawicki, G.J., Moslehi, J.J., Serpell, L., Arnsdorf, M.F., and Lindquist, S.L. (2000). Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321.

Lindquist, S., DebBurman, S.K., Glover, J.R., Kowal, A.S., Liu, J.J., Schirmer, E.C., and Serio, T.R. (1998). Amyloid fibres of Sup35 support a prion-like mechanism of inheritance in yeast. Biochem. Soc. Trans. 26, 486–490.