Publications

111) Junzhe Wang, Xiaolong Guo, Yijin Chen, Tianxiang Liu, Jianchu Zhu, Shengbao Xu, Elizabeth Vierling.  Maternal nitric oxide homeostasis impacts female gametophyte development under optimal and stress conditions.  The Plant Cell (2024) DOI: https://doi.org/10.1093/plcell/koae043 110)  Maria MeloniJacopo RossiSilvia FantiGiacomo CarloniDaniele TedescoPatrick TreffonLuca PiccininiGiuseppe FaliniPaolo TrostElizabeth VierlingFrancesco LicausiBeatrice GiuntoliFrancesco MusianiSimona FermaniMirko Zaffagnini. Structural and biochemical characterization of Arabidopsis alcohol dehydrogenases reveals distinct functional properties but similar redox sensitivity (2024).  DOIhttps://doi.org/10.1111/tpj.16651 109) Waters, E., M. Bezanilla, E. Vierling. ATAD3 Proteins: Unique Mitochondrial Proteins Essential for Life in Diverse Eukaryotes. Plant & Cell Physiology (2023). https://doi.org/10.1093/pcp/pcad122 108) Zhu, L., A. Scafaro, E. Vierling, M. Ball, B Posch, F. Stock, O. Atkin. Heat tolerance of a tropical-subtropical rainforest tree species Polyscias elegans: time-dependent dynamic responses of physiological thermostability and biochemistry. New Phytologist. (2023). https://doi.org/10.1111/nph.19356 107)  Minsoo Kim, John Swenson, Fionn McLoughlin, Elizabeth Vierling Mutation of the polyadenylation complex subunit CstF77 reveals that mRNA 3’ end formation and HSP101 levels are critical for a robust heat stress response. The Plant Cell, koac351, https://doi.org/10.1093/plcell/koac351 106) Treffon, P., J. Rossi, G. Gabbellini, P. Trost, M. Zaffagnini, E. Vierling. Quantitative proteome profiling of a S-nitrosoglutathione reductase (GSNOR) null mutant reveals a new class of enzymes involved in nitric oxide homeostasis in plants. Front Plant Science 12:787435. (2021) doi: 10.3389/fpls.2021.787435 . 105) Kim, M, J.D. Swenson, F. McLoughlin, E. Vierling. A temperature sensitive mutation in the CstF77 subunit of the polyadenylation complex reveals the critical function of mRNA 3′ end formation for a robust heat stress response in plants. bioRxiv (2021) https://doi.org/10.1101/2021.10.31.466691 104) Liu, T., J. Arsneault*, E. Vierling, M. Kim. Mitochondrial ATP Synthase Subunit d, a Component of the Peripheral Stalk, is Essential for Growth and Heat Stress Tolerance in Arabidopsis thaliana. bioRxiv (2021) https://doi.org/10.1101/2021.02.02.429459, Plant Journal 107:713-726. doi: 10.1111/tpj.15317. 103) Kim, M., V. Schulz, L. Brings, T. Schoeller, K. Kühn, E. Vierling. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. [First published in bioRxiv (2020) 2020.05.11.088575]; New Phytologist 232: 2026-2042 (2021) https://doi.org/10.1111/nph.17717. Recommended: Leister D and Kleine T: Faculty Opinions Recommendation of [Kim M et al., New Phytol 2021 232(5):2026-2042]. In Faculty Opinions, 09 Nov 2021; 10.3410/f.740764188.793589415 102)  Tianxiang LiuJesse ArsenaultElizabeth VierlingMinsoo Kim, Mitochondrial ATP Synthase Subunit d, a Component of the Peripheral Stalk, is Essential for Growth and Heat Stress Tolerance in Arabidopsis thaliana –  101) Elizabeth Waters, Elizabeth Vierling, Plant small heat shock proteins – evolutionary and functional diversity.  New Phytologist. April 2020. https://doi.org/10.1111/nph.16536 100) Fionn McLoughlin, Minsoo Kim, Richard S Marshall, Richard D. Vierstra, Elizabeth VierlingProtein disaggregation after heat stress. 99) Santhanagopalan, I., M.T. Degiacomi, D.A. Shepard, G.K.A. Hochberg, J.L.P. Benesch, E. Vierling. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. J. Biol. Chem. 293: 19511–19521 (2018). Cover article. 98) Wang, X., L. Hou, Y. Lu, B. Wu, X. Gong, M. Liu, J. Wang, Q. Sun, E. Vierling, S. Xu. Metabolic adaptation of wheat grain contributes to stable filling rate under heat stress. J. Exp. Bot. 69: 5531-5545 (2018). https://doi.org/10.1093/jxb/ery303 97) Marklund, E. G., Y. Zhang, E. Basha, J. L.P. Benesch, E. Vierling. Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis. Cell Stress & Chaperones https://doi.org/10.1007/s12192-018-0884-3 (2018). PMCID: PMC6045555 96) Hochberg, G. K.A., D. A. Shepherd, E.G. Marklund, I. Santhanagoplan, M. Degiacomi, A. Laganowksy, T. M. Allison, E. Basha, M. T. Marty, M. R. Galpin, W. B. Struwe, A. J. Baldwin, E. Vierling, J. L.P. Benesch.. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 359: 930-935 (2018). PMID:29472485 95) Guerra, D., S. Eyles, I. Truebridge, P. Treffon, E. Vierling. Direct detection of in vitro protein nitrosation by mass spectrometry: S-Nitrosoglutathione Reductase as a Model Protein. In: Mengel A., Lindermayr C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747, pp 143-160. Humana Press, New York, NY (2018). PMID:29600457 94) Zhang, L. X. Liu, K. Gaikwad, X. Kou, F. Wang, X. Tian, M. Xin, Z. Ni, Q. Sun, H. Peng, E. Vierling. Mutations in eIF5B confer thermosensitive and pleiotropic phenotypes via translation defects in Arabidopsis thaliana. Plant Cell 29:1952-1969 (2017). PMID: 28808135 93) Kim, M., F. McLoughlin, E. Basha, E. Vierling. Assessing tolerance to acute heat stress. Bio-protocol 7(14): e2405. DOI: 10.21769/BioProtoc.2405 (2017). 92) McLoughlin, F., E. Basha, M. E. Fowler*, M. Kim, J. Bordowitz*, S. Katiyar-Agarwal, E. Vierling. Class I and II small heat shock proteins together with HSP101 protect eukaryotic protein translation factors during heat stress. Plant Physiol. 172:1221-1236 (2016). PMID:27474115 91) Guerra, D., K. Ballard, I. Truebridge*, E. Vierling. S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 55:2452-64 (2016). PMID:27064847 90) Haslbeck, M., E. Vierling. A first line of defense: Small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 427:1537-48 (2015). PMID:25681016 89) Patel, S., E. Vierling, F. Tama. Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins. Biophys. J. 106:2644-2655 (2014). PMID:24940782 88) Xu, S., D. Guerra, U. Lee, E. Vierling. S-Nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front. Plant Sci. 4: 1-13 (2013). doi: 10.3389/fpls.2013.00430. PMID:24204370 87) Basha, E. C. Jones, A.E. Blackwell, G. Cheng, E.R. Waters, K.A. Samsel*, M. Siddique, V. Pett, V. Wysocki, E. Vierling. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones. J. Mol. Biol. 425:1683-96 (2013). PMID: 23416558 86) Kim, M., U. Lee, I. Small, C. des Francs-Small, E. Vierling. Mutations in a mitochondrial transcription termination factor (mTERF)-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. Plant Cell 24:3349-65 (2012). PMID: 22942382 85) Stengel,F., A. J. Baldwin, M. F. Bush, G. R. Hilton, H. Lioe, E. Basha, N. Jaya, E. Vierling, J. L.P. Benesch. Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach. Chem. Biol. 19: 599-607 (2012). Subject of commentary: Chem. Biol. 19:547-548 (2012). PMID: 22633411 84) Basha, E., H. O’Neill, E. Vierling. Small Heat Shock Proteins/α-crystallins:Dynamic proteins with flexible functions. Trends Biochem. Sci. 37:106-117 (2012). PMID:22177323 83) Benesch, J.L.P., J A. Aquilina, A. J. Baldwin, A. Rekas, F. Stengel, R. A Lindner, E. Basha, G. L. Devlin, J. Horwitz, E. Vierling, J. A. Carver, & C. V. Robinson. The quaternary organization and dynamics of the molecular chaperone HSP26 are thermally regulated. Chem. Biol. 17:1008-1017 (2010). PMC3388541. 82) Basha, E., C. Jones, V. Wysocki, E. Vierling. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J. Biol. Chem. 285:11489-11497 (2010). PMID: 20145254 81) Stengel, F., A. J. Baldwin, A. J. Painter, N. Jaya, E. Basha, L. E. Kay, E. Vierling, C. V. Robinson, J. L.P. Benesch. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc. Natl. Acad. Sci. 107:2007-2012 (2010). Featured in PNAS commentary: 107:2727-2728. PMID:20133845 80) Jaya, N., V. Garcia*, E. Vierling. Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc. Natl. Acad. Sci. 106:15604-15609 (2009) PMID:19717454 79) Cheng, G., E. Basha, V.H. Wysocki, E. Vierling. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry. J. Biol. Chem. 283:26634-42 (2008). Featured as “Paper of the Week”. PMID: 18621732 78) Bologi, Z., O. Cheregi, K.C. Giese, K. Juhász, E. Vierling, I. Vass, L. Vigh, I. Horváth. A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in Synechocystis 6803. J. Biol. Chem. 283:22983-22991 (2008). PMID:18574246 77) Painter, A.J., N. Jaya, E. Basha, E. Vierling, C.V. Robinson , J.L. Benesch. Real-Time Monitoring of Protein Complexes Reveals their Quaternary Organization and Dynamics. Chem Biol. 15:246-53 (2008). PMID:18355724 76) Lee, U., C.Wie*, B. O. Fernandez, M. Feelisch, E. Vierling. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth. Plant Cell 20:786-802, (2008). PMID:18326829 75) Offerdahl, E., T. Baldwin, L. Elfring, E. Vierling, M. Ziegler. Reading questions in large lecture courses. J. College Teaching, March/April:34-38 (2008). 74) Tonsor, S.J., C. Scott, I. Boumanza*, T.R. Liss, J.L. Brodsky, E. Vierling. Heat shock protein 101 effects in Arabidopsis thaliana: Genetic variation, fitness and pleiotropy in controlled environments. Mol. Ecol. 17:1614-1626 (2008). PMID:18321256 73) Larkindale, J., E. Vierling. Core genome responses involved in acclimation to high temperature. Plant Physiol. 146:748-761 (2008). PMID: 18055584 72) Siddique, M., S. Gernhard, P. von Koskull-Döring, E. Vierling, K-D. Scharf. The plant sHSP superfamily: Five new members in Arabidopsis thaliana with unexpected properties. Cell Stress & Chaperones 13:183-197 (2008). PMID:18369739 71) Schramm, F., J. Larkindale, K. Kiehlmann, G. Arnab, G. Englich, G., E. Vierling, P. von Koskull-Döring. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53: 264-274 (2008). PMID:17999647 70) McClellan, C.A., T.J. Turbeyville, E.M. K. Wijeratne, A. Kerschen, E. Vierling, C. Queitsch, L. Whitesell, A.A. Gunatilaka. A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an Hsp90 inhibitor. Plant Physiol 145: 174-182 (2007). Highlighted in Science Stke http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2007/403/tw333. PMID: 17631526 69) Kotak, S., E. Vierling, H. Bäumlein, P. von Koskull-Döring. A novel transcriptional cascade regulating heat stress proteins during seed development in Arabidopsis. Plant Cell 19:182-195 (2007). PMID:17220197 68) Kwon, Y., S-H. Kim, M-S. Jung, M-S. Kim, J-E. Oh, H-W. Ju, K-I. Kim, E. Vierling, H. Lee, S-W. Hong. Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J. 49:184-193 (2007). PMID:17156413 67) Lee, U., I. Rioflorido, S-W. Hong, J. Larkindale, E. R.Waters, E.Vierling. The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development. Plant Journal 49:115-127 (2007). PMID:17144892 66) Basha, E., K.L. Friedrich, E. Vierling. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J. Biol. Chem. 281: 39943-39952 (2006). PMID:17090542 65) Giese, K.C., E. Basha, B.Y. Catague*, E. Vierling. Evidence for an essential function of the N-terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc. Natl. Acad. Sci. 102: 18896-18901 (2005). PMID:16365319 64) Larkindale, J. J, D. Hall, M. R. Knight, E. Vierling. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138:882-97 (2005). PMID:15923322 63) Balogi,Z., Z. Török, G. Balogh, K. Jósvay, N. Shigapova, E. Vierling, L. Vígh, I Horváth. “Heat shock lipid” in cyanobacteria during heat/light-acclimation. Arch. Biochem. Biophys. Membrane Biochem. Biophys. 436:346-54 (2005). PMID:15797247 62) Lee,U., C. Wie*, M. Escobar*, B. Williams, S.-W. Hong, E. Vierling. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the sHsp chaperone system. Plant Cell 17:559-571 (2005). PMID:15659638 61) Giese, K.C., E. Vierling. Mutants in a small heat shock proteins that affect the oligomeric state: analysis and allele specific suppression. J. Biol. Chem. 279: 32674 – 32683 (2004). PMID:15152007 60) Lum, R., J. M. Tkach, E. Vierling, and J. R. Glover. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279: 29139 – 29146 (2004). PMID:15128736 59) Clerkx,E.J.M., M. E. El-Lithy, E. Vierling, G.J. Ruys, H.Blankestijn-DeVries, S.P.C. Groot, D. Vreugdenhil, M. Koornneef. Analysis of natural allelic variation of Arabidopsis seed quality traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol. 135: 432-443 (2004). PMID:15122038 58) Basha, E., G.J. Lee, B. Demeler, E. Vierling. Chaperone activity of cytosolic small heat shock proteins in wheat. Eur. J. Biochem. 271:1-11 (2004). PMID:15066169 57) Basha, E., G. J. Lee, L. A. Breci, A.C. Hausrath, N. R. Buan*, K C. Giese, E. Vierling. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279: 7566-7575 (2004). PMID:14662763 56) Friedrich, K. L., K. C. Giese, N. R. Buan*, E. Vierling. Interactions between small heat shock protein subunits and substrate in small heat shock protein/substrate complexes. J. Biol. Chem. 279:1080-1089 (2004). PMID:14573605 55) Mogk, A., E.Deuerling, S. Vorderwülbecke, E. Vierling, B. Bukau. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50:585-595 (2003). PMID:14617181 54) Wintrode, P.L., K. L. Friedrich, E. Vierling, J. B. Smith, D. L. Smith. Solution structure and dynamics of a heat shock protein complex probed by hydrogen exchange/mass spectrometry. Biochemistry 42:10667-10673 (2003). DOI: 10.1021/bi034117m 53) Mogk, A., C. Schlieker, K. L. Friedrich, H-J. Schönfeld, E. Vierling, B. Bukau. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK J. Biol. Chem. 278:31033-31042 (2003). PMID:12788951 52) Liu, Z., S-W. Hong, M. Escobar*, E. Vierling, D. L. Mitchell, D. W. Mount, J. D. Hall. Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth. Plant Physiol. 132:757-767 (2003). PMID:12857822 51) Hong, S-W., U. Lee, E. Vierling. Arabidopsis hot mutants define multiple functions required for acclimation to high temperature. Plant Physiol. 132:1405-1414 (2003). PMID: 12805605 50) Giese, K.C., E. Vierling. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J. Biol. Chem. 277: 46310-46318 (2002). PMID:12297515 49) Sobott, F., J.L.P. Benesch, E. Vierling, C.V. Robinson. Subunit exchange of multimeric protein complexes Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray-mass spectrometry. J. Biol. Chem. 277: 38921-38929 (2002). PMID:12138169 48) Tsvetkova, N.M., I. Horváth, Z. Török, W.F. Wolkers,, Z. Balogi, N. Shigapova, L.M. Crowe, F. Tablin, E. Vierling, J.H. Crowe, L. Vigh. Small heat shock proteins regulate lipid polymorphism. Proc. Natl. Acad. Sci. 99:13504-13509 (2002). PMID:12368478 47) van Montfort, R., E. Basha, K.L. Friedrich, C. Slingsby, E. Vierling. Structure and assembly of a eukaryotic small heat shock protein. Nature Struct. Biol. 8:1025-1030 (2001). PMID:11702068 46) Salvucci, M. E., K.O. Osteryoung, S.-J. Crafts-Brandner, E. Vierling. Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol. 127:1053-1064 (2001).  DOI: https://doi.org/10.1104/pp.010357 45) Hong, S-W., E.Vierling. Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J. 27:25-35 (2001). PMID:11489180 44) Sung, D.Y., E.Vierling, C. Guy. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126:789-800 (2001). PMID:11402207 43) Török, Z., P. Goloubinoff, I. Horváth, N.M. Tsvetkova, A. Glatz, G. Balogh, V. Varvasovszki, D.A.Los, E. Vierling, J.H. Crowe and L. Vígh. Synecjocytis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc. Natl. Acad. Sci. 98:3098-3103 (2001). https://doi.org/10.1073/pnas.051619498 42) Queitsch,C., S-W. Hong, E. Vierling, S. Lindquist. Hsp101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479-492 (2000). PMID:10760238 41) Hong, S-W., E. Vierling. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. 97: 4392-4397 (2000). PubMed: 10760305 40) Wehmeyer,N., E. Vierling. The expression of sHsps in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol.122:1099-1108 (2000).PMID:10759505 39) Lee, G.J., E. Vierling. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122:189-198 (2000). PMID:10631262 38) Waters, E., E. Vierling. Chloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized protein. Proc. Natl Acad. Sci 96:14394-14399 (1999). PubMed:10588716 37) Härndahl,U., R.B. Hall, K.O. Osteryoung, E. Vierling, J. Bornman, C. Sundby. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress & Chaperones 4:129-138 (1999). PMID:10547062 36) Basha, E.M., E.R. Waters, E. Vierling. Triticum aestivum cDNAs homologous to nuclear-encoded mitochondrion-localized small heat shock proteins. Plant Sci. 141:93-103 (1999). https://doi.org/10.1016/S0168-9452(98)00219-2 35) Waters, E.R, E. Vierling. The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol. Biol. & Evol. 16:127-139 (1999). 34) Suzuki, T.C., D.C. Krawitz*, E. Vierling. The chloroplast small heat shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. Plant Physiol. 116:1151-1161 (1998). PMID: 9501148 33) Helm, K.W., G.J. Lee, E. Vierling. Expression and native structure of cytosolic class II small heat shock proteins. Plant Physiol. 114:1477-1485 (1997) 32) Lee, G.J., A.M. Roseman, H.R. Saibil, E. Vierling. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding competent state. EMBO J. 16:659-671 (1997). PMID: 9034347 31) Willett, D.A., E. Basha, E. Vierling. Nucleotide sequence of a cDNA encoding a mitochondrion-localized small HSP from Arabidopsis thaliana: AtHsp23.6 (Accession No. U72958). Plant Physiol. 112:1400 (1996). 30) Wehmeyer, N., L.D. Hernandez*, R.R. Finkelstein, E. Vierling. Synthesis of a small heat shock protein is part of the developmental program of late seed maturation. Plant Physiol. 270:10432-10438 (1996). PMID: 8883386 29) LaFayette, P.R., R.T. Nagao, K. O’Grady, E. Vierling, J.L. Key. Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean organelles. Plant Mol. Biol. 30:159-169 (1996). DOI: 10.1007/BF00017810 28) Waters, E.R., G.J. Lee, E. Vierling. Evolution, structure and function of the small heat shock proteins in plants. J. Exper. Bot. 47:325-338 (1996). https://doi.org/10.1093/jxb/47.3.325 27) Osteryoung, K.W., E. Vierling. Conserved cell and organelle division mechanisms. Nature 376:473-474 (1995). PMID:7637778 26) Viitanen, P.V., M. Schmidt, J. Buchner, T. Suzuki, E. Vierling, R. Dickson, G.H. Lorimer, A. Gatenby, J. Soll. Functional characterization of the higher plant chloroplast chaperonins. J. Biol. Chem. 270:10432-10438 (1995). PMID:7629128 25) Lee, G.J., E. Vierling. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270:10432-10438 (1995). PMID:7737977 24) DeRocher, A., E. Vierling. Cytoplasmic HSP70 homologues of pea: differential expression in vegetative and embryonic organs. Plant Mol. Biol. 27:441-456 (1995). PMID:7894010 23) Helm, K.W., J. Schmeits*, E. Vierling. An ER-localized small heat shock protein from Arabidopsis. Plant Physiol. 107:287-288 (1995). PMID: 7870826 22) Schirmer, E.C., S. Lindquist, E. Vierling. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899-1909 (1994). PMID:7866032 21) Osteryoung, K.W., E. Vierling. Dynamics of small heat shock protein distribution within the chloroplast of higher plants. J. Biol. Chem. 269:28676-28682 (1994). www.jbc.org/content/269/46/28676.full.pdf 20) Chen, Q., K.W. Osteryoung, E.Vierling. A 21 kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in organelle. J. Biol. Chem. 269:13216-13223 (1994). http://www.jbc.org/content/269/18/13216 19) DeRocher, A.E., E. Vierling. Developmental control of small heat shock protein expression during pea seed maturation. Plant J. 5:93-102 (1994). https://doi.org/10.1046/j.1365-313X.1994.5010093.x 18) Osteryoung, K.W., H. Sundberg*, E. Vierling. Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol. Gen. Genet. 239:323-333 (1993). PMID:8391109 17) Hernandez, L.D.*, E. Vierling. Expression of low molecular weight heat shock proteins under field conditions. Plant Physiol. 101:1209-1216 (1993). PMID: 12231775 16) Helm, K.W., P. Lafayette, R.T. Nagao, J.L. Key, E. Vierling. Localization of small HSPs to the higher plant endomembrane system. Mol. Cell. Biol. 13:238-247 (1993). PMID:8417329 15) DeRocher, A., K.W. Helm, L.M. Lauzon, E. Vierling. Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol. 96:1038-1047 (1991). PMID: 16668295 14) Chen, Q., E. Vierling. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol. Gen. Genet. 226:425-431 (1991). PMID:2038305 13) Nieto-Sotolo, J., E. Vierling, T-H. D. Ho. Cloning, sequence analysis and expression of a cDNA encoding a plastid-localized heat shock protein in maize. Plant Physiol. 93:1321-1328 (1990). PMID: 16667620 12) Chen, Q., L.M. Lauzon, A.E. DeRocher, E. Vierling. Accumulation, stability and localization of a major chloroplast heat shock protein. J. Cell Biol. 110:1873-1883 (1990). PMID:2351688 11) Lauzon, L., K. Helm, E. Vierling. A cDNA clone from Pisum sativum encoding a low molecular weight heat shock protein. Nuc. Acids Res. 18:4274 (1990). PMID: 2377479 10) Marshall, J., A.E. DeRocher, K. Keegstra, E. Vierling. Identification of HSP70 homologues in chloroplasts. Proc. Natl Acad. Sci. 87:374-378 (1990). PMID:2296591 9) Helm, K., E. Vierling. An Arabidopsis thaliana cDNA clone encoding a low molecular weight heat shock protein. Nuc. Acids Res. 17:7995 (1989). PMID:2798141 8) Vierling, E., L. M. Harris, Q. Chen. The major low molecular weight heat shock protein in chloroplasts shows antigenic conservation among diverse higher plant species. Mol. Cell. Biol. 9:461-468 (1989). PMID: 2710111 7) Vierling, E., R.T. Nagao, A.E. DeRocher, L.M. Harris. A chloroplast-localized heat shock protein is a member of a eukaryotic superfamily of heat shock proteins. EMBO J. 7:575-581 (1988). PMID: 3396532 6) Vierling, E., M.L. Mishkind, G.W. Schmidt, J.L. Key. Specific heat shock proteins are transported into chloroplasts. Proc. Natl Acad. Sci. 83:361-365 (1986). PMID: 16593647 5) Vierling, E., J.L. Key. Ribulose 1,5-bisphosphate carboxylase synthesis during heat shock. Plant Physiol. 78:155-162 (1985). PMID: 16664190 4) Vierling, E., R.S. Alberte. P700 chlorophyll a-protein: purification, characterization, and antibody production. Plant Physiol. 72:625-633 (1983). PMID: 16663057 3) Vaughn, K.C., E. Vierling, S.O. Duke, R.S. Alberte. Immunocytochemical and cytochemical localization of photosystems I and II. Plant Physiol. 73:203-207 (1983). PMID: 16663195 2) Vierling, E., R.S. Alberte. Regulation of synthesis of the photosystem I reaction center. J. Cell Biol. 97:1806-1814 (1983). DOI: 10.1083/jcb.97.6.1806 1) Vierling, E., R.S. Alberte. Functional organization and plasticity of the photosynthetic unit of the cyanobacterium Anacystis nidulans. Physiologia Plant. 50:93-98 (1980). https://doi.org/10.1111/j.1399-3054.1980.tb04432.x

Other Invited reviews: (12 total)

12) Vierling, E. Mechanism of chaperone action of small heat shock proteins, in ed. W. Houry, Molecular Chaperones: Principles and Diseases (Henry Stewart Talks, London, 2007). Online at: http://www.hstalks.com/molchap/index.htm 11) Kotak, S., J. Larkindale, U. Lee, P. von Koskull-Döring, E. Vierling, K-D. Scharf. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10:310-316 (2007). PMID:17482504 10) Scharf, K-D., M. Siddique, E. Vierling. The expanding family of Arabidopsis thaliana small heat stress proteins (sHsps) and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress & Chaperones 6:225-237 (2001). PMID: 11599564 9) Lee,G.J., E. Vierling. Expression, purification and molecular chaperone activity of recombinant plant small heat shock proteins. In: Protein Folding: Catalysts, accessory proteins, and chaperones. G. Lorimer and T.O. Baldwin, eds. Methods in Enzymology 290:350-365 (1998). PMID:7737977 8) E. Vierling. The small heat shock proteins in plants are members of an ancient family of heat induced proteins. Acta Physiologiae Plantarum 19:539-547 (1997). https://doi.org/10.1007/s11738-997-0051-4 7) Gaestel, M., E. Vierling, J. Buchner. The small heat shock proteins – an overview. In: Handbook of molecular chaperones and protein folding catalysts. M.J. Gething, ed. Sambrook and Tooze Publications at Oxford University Press. pp.269-272 (1997). 6) Vierling, E. Plant HSP100/ClpB. In: Handbook of molecular chaperones and protein folding catalysts. M.J. Gething, ed. Sambrook and Tooze Publications at Oxford University Press. pp.253-255 (1997). 5) Vierling, E. Chloroplast-localized Clp proteins. In: Handbook of molecular chaperones and protein folding catalysts. M.J. Gething, ed. Sambrook and Tooze Publications at Oxford University Press. pp.255- 258 (1997). 4) Vierling, E., G.J. Lee. Plant small heat shock proteins. In: Handbook of molecular chaperones and protein folding catalysts. M.J. Gething, ed. Sambrook and Tooze Publications at Oxford University Press. pp.277-280 (1997). 3) Boston, R.S., P.V. Viitanen, E. Vierling. Molecular chaperones and protein folding in plants. In: Post-transcriptional control of gene expression in plants. W. Filipowicz and T. Hohn, eds. Plant Mol. Biology 32:191-222 (1996). PMID:8980480 2) Vierling, E., J.A. Kimpel. Plant responses to environmental stress. Curr. Opin. Biotechnology 3:164-179 (1992). DOI: 10.1016/0960-9822(92)90905-P 1) Vierling, E. The roles of heat shock proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:579-620 (1991). https://doi.org/10.1146/annurev.pp.42.060191.003051

Book Chapters: (7 total)

7) Santhanagopalan, I., E. Basha, K. N. Ballard, N. E. Bopp, E. Vierling. Model Chaperones: Small Heat Shock Proteins from Plants. in: The Big Book of Small Heat Shock Proteins, Ed. R.M. Tanguay and L. Hightower, Stuart Calderwood Series, Springer Verlag, pp 119-153 (2015). 6) Larkindale, J., M. Mishkind, E. Vierling. Plant responses to high temperature: In: Plant Abiotic Stress. Matthew A. Jenks and P.M. Hasegawa, eds. Blackwell Publishing (2005). 5) van Montfort, R., C. Slingsby, E. Vierling. Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones. In: Protein Folding in the Cell. Advances in Protein Chemistry Series. A. Horwich, ed. Academic Press. Vol 59:105-156 (2002). 4) Vierling, E. Heat shock protein function and expression in plants. In: Stress Responses in Plants: Adaptation Mechanisms. Ruth Alscher, ed. Alan R. Liss, Inc. N.Y. pp.357-375 (1990). 3) Nagao, R.T., J.A. Kimpel, E. Vierling, J.L. Key. The heat shock response: A comparative analysis. In: Oxford Surveys of Plant Molecular and Cell Biology. B. Miflin, ed. Oxford Univ. Press, pp. 384-438 (1986). 2) Key, J.L., J. Kimpel, E. Vierling, C.-Y. Lin, R.T. Nagao, E. Czarnecka, F. Schöffl. Physiological and molecular aspects of the heat shock response in plants. In: Changes in Gene Expression in Response to Environmental Stress. B. Atkinson & D.Walden, eds. Academic Press (1985). 1) Key, J.L., J.A. Kimpel, C.Y. Lin, R.T. Nagao, E. Vierling, et al. The heat shock response in soybean. In: Cellular and Molecular Biology of Plant Stress. J.L. Key & T. Kosuge, eds. Alan R. Liss, N.Y. (1985).

Symposium Articles – invited: (7 total)

7) Carra, S., S. Alberti, P.A. Arrigo, J. L. Benesch, I. J. Benjamin, W. Boelens, B. Bartelt-Kirbach, B. J. J. M. Brundel, J. Buchner, B. Bukau, J. A. Carver, H. Ecroyd, C. Emanuelsson, S. Finet, N. Golenhofen, P. Goloubinoff, N. Gusev, M. Haslbeck, L. E. Hightower, H. H. Kampinga, R. E. Klevit, K. Liberek, H. S. Mchaourab, K. A. McMenimen, A. Poletti, R. Quinlan. S. V. Strelkov, M. E. Toth, E. Vierling, R. M. Tanguay. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones. DOI 10.1007/s12192-017-0787-8 March (2017). 6) Waters, E.R., E. Vierling. Molecular adaptation: A phylogenetic approach to the evolution of the small heat shock proteins in plants. Proceedings of the US-Japan Binational Workshop in Molecular Evolution. The Graduate University for Advanced Studies, Hayama, Japan. (1995). 5) Osteryoung, K.W., B. Pipes, N. Wehmeyer, E. Vierling. Studies of a chloroplast-localized small heat shock protein in Arabidopsis. In: Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. J. Cherry, ed. NATO ASI Series. Vol H 86: 97-113. Springer-Verlag, Berlin (1994). https://www.springer.com/us/book/9783642791352 4) Osteryoung, K., E. Vierling. Genetic approaches to the function of the chloroplast low molecular weight heat shock proteins. In: Research in Photosynthesis, Norio Murata, ed. Vol IV, pp.129-136. Kluwer Academic Publishers, Dordrecht, The Netherlands (1992). 3) Vierling, E., A. Sun. Developmental regulation of heat shock proteins in higher plants. NATO ASI Series. Environmental Stress in Plants. J. Cherry, ed. Vol. G19: 343-354. Springer-Verlag, Berlin. (1989). https://link.springer.com/book/10.1007%2F978-3-642-73163-1 2) Vierling, E. Characterization of chloroplast-localized heat shock proteins. In: Plant Gene Systems and their Biology, L. McIntosh, J.L. Key, eds. A.R. Liss, Inc., pp. 99-108 (1987). 1) Vierling, E., J.K. Roberts, R.T. Nagao, J.L. Key. A chloroplast heat shock protein has homology to cytoplasmic heat shock proteins. In: Progress in Photosynthesis Research. J. Biggins, ed. Vol IV: 143-145 (1987). https://doi.org/10.1007/978-94-017-0519-6_31